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A B S T R A C T   

Deploying Tidal Energy Converters for electricity generation requires prior-knowledge of the potential Annual 
Energy Production (AEP) at the site, Ideally using a year-long tidal current record at the proposed site to 
minimize uncertainty. However, such records are often unavailable. Fortunately, using the periodic nature of 
tidal variability, the International Electrotechnical Commission Technical Specification for tidal energy resource 
assessment requires AEP calculation using at least 90 days of tidal current records at each turbine location. The 
sensitivity of AEP to different record durations has not been fully assessed. This is the goal of our study. The study 
utilized the U.S. tidal energy geodatabase to simulate tidal currents with various lengths, during 100 years of the 
21st century. We then consider two frameworks for evaluating AEP: (a) The long-term (months) fixed instrument 
(FI) measurement at each proposed tidal turbine location, and (b) one FI measurement and short-term (hours) 
boat-based moving vessel measurements. Under the two scenarios, we examine the AEP assessed from short tidal 
current records, including how the AEP uncertainties vary spatially and temporally, and how they are associated 
with various astronomical factors. This helps provide guidance on choosing the appropriate assessment meth
odologies to reduce the AEP uncertainties and project cost.   

1. Introduction 

The continuously growing global energy demand has been mainly 
met by fossil fuel combustion, leading to expansion of carbon emission 
and exacerbation of global warming [1]. To constrain the global 
warming to 1.5 ◦C above pre-industrial level, the renewable share in 
electricity generation is required to reach 50% by 2030 and 70% by 
2050 [2]. In 2020, 29% of electricity generation is supplied by renew
ables [1] (26% in 2018 [3]), among which solar and wind energy are the 
major contributors and projected to continuously expand in the near 
future [4]. Tidal energy has the potential for becoming a contributor to 
the renewable energy portfolio due to its predictability and the 
constantly improving technology for extraction, making it a potentially 
reliable and dependable energy source. 

Tides are the regular rise and fall of the ocean surface and the 
induced currents, derived from the gravitational and centrifugal force 
balance between the earth, moon, and sun [5]. A lunar day (24 h and 50 
min) is the time it takes for a fixed point on earth to complete a rotation 
under the same point on the moon. Correspondingly, the forces on that 
point changes from the strongest gravitational pull of the moon to the 

strongest centrifugal force, generating two high tides per day [6]. The 
existence of continents greatly interferes with the surging process, 
resulting in distinct tidal characteristics, including (a) semidiurnal tides, 
featured by two high tides and two low tides per day, (b) diurnal tides, i. 
e., daily occurrence of one high tide and one low tide, and (c) mixed 
tides, having signatures in between [7]. Twice per month during a lunar 
month (29.53 days), the moon orbits around the earth to a position that 
the moon, sun and earth are nearly in alignment, where the gravitational 
forces of the moon and the sun are superimposed, leading to 
higher-than-average tidal ranges, denoted as spring tides [8]. Neap 
tides, referring to lower tidal ranges, also occur twice a month when the 
sun and moon are aligned at a right angle from the earth. The long-term 
tidal variation is modulated by the 18.61-year lunar nodal cycle. The 
orbit of the moon is inclined at a constant 5o 9′ to the ecliptic, the plane 
in which the earth orbits the sun, whereas the earth’s equatorial plane is 
inclined at a constant 23o 27′ to the ecliptic. The resulting lunar decli
nation, the angle of the lunar orbit to the equator, is dynamically 
changing, reaching to a maximum (23o 27’+5o 9′) and a minimum (23o 

27′-5o 9′) once every 18.61 years, which leads to the largest nodal 
modulation of diurnal tides and semidiurnal tides, respectively [9–11]. 
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Due to these astronomical formations, tides are inherently periodic and 
predictable, making tidal energy available on a consistent basis, which is 
a desired feature for reliable energy generation. 

Tidal energy includes both tidal range and tidal stream energy, 
extracted from the regular rise and fall of the ocean surface and the 
induced current, respectively. Presently, tidal range energy has been 
harnessed on a commercial scale using tidal barrages, designed to create 
an artificial phase difference by impounding water and subsequently 
allowing it to flow through turbines [12]. However, due to the high cost 
of constructing a dam and potentially significant environmental impacts 
from damming, only several commercial tidal barrages are currently 
present, in France [13], Russia [6], Canada [14], China [15], and Korea 
[16]. In contrast, extracting tidal stream energy directly from the 
moving water with Tidal Energy Converters (TECs) requires less infra
structure and allows more flexible site selections. As such, much of the 
ongoing development has been devoted to tidal stream technology. 
Prototype and pioneering devices have been tested in several demon
stration sites, including: the US Federal Energy Regulatory Commission 
Pilot Project-licensed Roosevelt Island Tidal Energy project at New York 
City’s East River [17,18]; the Zhoushan experiment in China [19]; the 
MeyGen project in Scotland [20]; the Orbital Marine Power’s floating 
tidal energy commercialization project, Scotland, that supports the 
electricity needs of approximately 830 UK homes in 2020 [20]. Their 
upgraded in-operation O2 turbine since summer 2021 aims to provide 
annual electricity to 2000 UK homes [21,22]. 

When determining the suitability of tidal stream sites, comprehen
sive regional resource assessments should be performed to evaluate the 
Annual Energy Production (AEP). The European Marine Energy Centre 
in 2009 [23] and the International Electrotechnical Commission in 2015 
(hereinafter referred to as IEC-62600-201) [24] have outlined a unified 
technical specification, regarding modeling, measurement, and analysis 
of the AEP based on tidal current records. For the purpose of computing 
the AEP, the technical specification recommends a minimum in-situ 
measurement of 90 days whereas the minimum hydrodynamic simula
tion needs to be one year. In addition, the tidal current variation of the 
measured or simulated time period should be comparable to the tidal 
current variation in a typical year. The term “typical” refers to a period 
of time with little nodal effect, as opposed to strong nodal modulation, 
which we will show accounts for ~10% of the AEP estimation uncer
tainty. Hence, the technical specification has acknowledged the un
certainties of the AEP estimation from short tidal current records; 
however, the quantification of these uncertainties has not been 
completed. 

In numerical and observational studies that adopt the guidelines of 
the technical specification (e.g., Refs. [25,26]), the uncertainties of the 
AEP estimation are rarely extensively discussed. One exception is the 
Admiralty Inlet tidal characterization, U.S. [27], which explicitly 
analyzed how the mean power density estimated from increasingly 
longer records gradually approaches the actual annual evaluation. 
Another example is the Alderney Race tidal characterization, France 
[28], which quantifies the decadal variability of AEP modulated by the 
lunar nodal cycle. In addition, an assessment of AEP in north-western 
Europe has documented that the lunar nodal cycle can contribute up 
to 10% AEP uncertainty [29], consistent with studies focusing on several 
other regions (see references in Ref. [29]). Yet these are site specific 
regional studies, which may not be sufficient to deliver general con
clusions on the AEP uncertainties. 

To compensate for the lack of uncertainty analysis in the first edition 
IEC-62600-201, an IEC Maintenance Team (MT) is working to expand on 
the unresolved issues. Besides quantifying the AEP uncertainties esti
mated directly from short tidal current records, an equally relevant topic 
is to explore indirect AEP computations, referring to (a) projecting a 
high-resolution long-term tidal current record at one location onto a 
nearby location with a tidal record of hours, and subsequently (b) 
assessing the AEP of the nearby location from the inferred long-term 
tidal record. One example is Ref. [30]. The indirect method, if robust, 

can be particularly useful and cost effective for assessing the AEP of TEC 
arrays by greatly reducing the number of required instruments and 
measurement durations. 

Given the aforementioned unresolved issues regarding AEP un
certainties, here our study focuses on conducting comprehensive AEP 
uncertainty assessment directly or indirectly derived from short tidal 
current records. For tidal data, we utilize the pre-validated U.S. tidal 
energy geodatabase [31] containing over 3.6 million geographic loca
tions and their harmonic constituents, to generate a large quantity of 
long-term tidal records. The geodatabase allows us the flexibility to 
explore many potential options of single TEC and TEC array deployment, 
for which we analyze the uncertainties associated with direct and in
direct AEP assessment, respectively. Through this analysis, we aim to (a) 
quantify the uncertainties of AEP assessment, including their spatial 
distribution and temporal variation, (b) improve our understanding on 
how the uncertainties are related to the astronomical sources, and (c) 
provide statistically robust guidelines on best practices for future mea
surements and choosing the most appropriate assessment methodologies 
for computing AEP. 

2. Data and methods 

2.1. Data 

We obtained the U.S. tidal energy geodatabase [31] containing 3.6 
million geographic locations and their water depths, depth-averaged 
mean current magnitudes, dominant water level and tidal current con
stituents, including semidiurnal (M2, N2, S2), diurnal (K1, O1, Q1) con
stituents and shallow water harmonics (M4 and M6). The geodatabase 
was built from multiple simulations of the U.S. coastal waters, using the 
Regional Ocean Modeling System (ROMS) [32], a well-known three-
dimensional free-surface terrain-following numerical model. All ROMS 
subdomains have an average grid spacing of at least 350 m within the 
inshore regions of interest; only the aforementioned tidal constituents 
were simulated, although nodal corrections were included in creating 
the forcing for the model (see Ref. [31] for details regarding the geo
database). Because the present study is focused on the methodologies 
rather than performing the actual tidal energy resource assessment, the 
model resolution and number of constituents provide enough detail to 
evaluate the effectiveness of the methods. 

The constituents were processed by T-TIDE [33], a Matlab toolbox of 
a standard harmonic-based prediction method. These constituents were 
then used to generate depth-averaged tidal current and water level re
cords of various durations during the 21st century, using the function 
“t_predic” of the T-TIDE toolbox. The nodal corrections based on the 
latitude are included by T-TIDE when creating the time series. 

2.2. Direct AEP assessment of single TECs 

The theoretical output power of a TEC is related to the kinetic energy 
of the currents [34]. The power per unit area (W/m2), without consid
ering the turbine efficiency and other potential losses in power extrac
tion, is given by, 

p=
1
2

ρU3, (1)  

where ρ = 1025 kg/m3 is the density of seawater, and U is the depth- 
averaged horizontal current velocity. We also do not consider the po
tential tidal phase differences across the water column, which may cause 
tidal currents at different water depths reaching peak current magni
tudes at a different time. Our results thus represent the depth-averaged 
and theoretical AEP assessment. 

To estimate the AEP of a potential TEC site, a current magnitude time 
series at the site, U(t), is processed into velocity bins to compute the 
discrete probability distribution, denoted as, 
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fi = P(Ui− 1 ≤U(t)<Ui), (2)  

where Ui is the i-th bin of U(t), fi is the probability of U(t) between Ui− 1 
and Ui, i ranges from 1 to N, and N is the total number of bins. N = 20 in 
this study, and the velocity bins were evenly distributed from 0 to 
maximum of U(t). The bin width is max(U(t))/20, in which the 
maximum is derived directly from the current magnitude time series of 
the site. U(t) is obtained through “t_predic” (see section 2.1). 

According to IEC-62600-201 [24], the AEP with the unit of kW • hr is 
determined as the weighted sum of the power produced by each velocity 
bin, multiplied by the total hours per year (Nh = 8760 hours), as 
followed, 

AEP=
Nh

1000
⋅
∑N

i=1
pi⋅fi, (3)  

where pi is computed from (1) with U = 1
2 (Ui− 1 + Ui). The 1000 con

verts W into kW. [Note that the current magnitude time series is denoted 

as U(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u(t)2
+ v(t)2

√

, whereas U→(t) = u(t) + i⋅v(t) denotes the cur
rent time series with real and imaginary parts being zonal and meridi
onal current components, respectively.] 

To compare the AEP estimated from a short record to that from a full- 
year record, we adopt the relative AEP error, 

dAEP=
ÂEP − AEP

AEP
× 100%, (4)  

where ÂEP is the short-record estimation, and AEP is the reference from 
a full year. We chose 2012 as our reference, considering that 2012 is a 
year of limited nodal cycle influence where the AEP computed for that 
year is close to the 18-year average. 

To robustly assess the uncertainty of AEP induced by short-record 
tidal currents, we analyzed dAEP for many locations and time periods 
with various durations. Specifically, from the tidal database [31], we 
extracted 5338 moderate energy locations with mean current magnitude 
≥ 0.5 m/s. We also identified 395 high energy locations with mean 
current magnitude ≥ 1 m/s. In addition, all moderate energy and high 
energy locations have water depths ≥ 5 m, and a minimum distance 
between any two locations ≥ 2 km. The spatial distribution of these 
locations is shown in Fig. 1. For each selected location, we generated the 
full-year-long 2012 tidal current record with a temporal resolution of 30 
min; this is used to derive the reference AEP in (4). We then randomly 
generated 500 timestamps between the year 2000 and the year 2100, 
following the uniform distribution (i.e., equal probability of sampling 
any timestamp). We then generated a tidal current record that starts 
from each of those timestamps and ends after d days; d thus represents 
the duration of the sampled record. This results in 500 short records of 
d-day tidal currents, upon which we evaluate ÂEP used in (4) and derive 
dAEP. The above process is carried out for each location of interests, 
leading to a dAEP matrix of size 5338 × 500 for moderate energy loca
tions (size 395 × 500 for high energy locations). We find that, in our 
synthetic record analysis, sampling 500 tidal records sufficiently 

captures the tidal variability during the 21st century. 
Furthermore, we examined multiple options of short durations, to 

comprehensively evaluate the AEP uncertainties and to search for the 
optimal choices of durations that lead to more accurate AEP assessment. 
Durations of short records that we examined range from 14 to 196 days, 
which covers much shorter to much longer than the 90-day requirement 
specified by the IEC-62600-201. Incorporating the durations, the dAEP 
matrix can be generally represented as dAEP(s,τ,d), where s represents a 
location, τ represents center of the time period being examined, and d is 
the duration of that time period. 

We then analyzed the spatial and temporal variation of the AEP 
assessment uncertainty, primarily based on this dAEP(s, τ, d) matrix. For 
example for d = 90 days, we computed the 95% confidence interval of 
the dAEP(s, τ, d= 90 days) matrix along the τ dimension, while fixing the 
location (s). Repeating this computation for every location thus gives us 
the AEP uncertainty at every location of interest. We also derived the 
95% confidence interval of the dAEP(s, τ, d= 90 days) matrix along the s 
dimension, while fixing the time period (τ) being examined. Repeating 
this computation for every sampled time period provides us the AEP 
uncertainty as a function of time. 

2.3. Regression-based AEP assessment of TEC arrays 

Utility-scale tidal energy plants often need to contain an array of 
turbines. To be able to assess the AEP of the array, a sufficiently long 
tidal current record at each TEC location is required. Conducting long- 
term direct measurements at each individual TEC location using cur
rent profilers can be cost prohibitive, especially if a large number of 
TECs is proposed for the site. As a means to reduce measurement cost, 
we propose conducting indirect measurements using only two current 
profilers for assessing the AEP of an array. The two current profilers 
consist of a bottom-mounted one deployed for a sufficiently long period 
of time at one proposed TEC location, and a surface vessel mounted one 
that periodically measures the current at the other proposed TEC loca
tions within the array for a very short period of time. From this point 
forward, the bottom mounted current profiler is termed as fixed in
strument (FI) and the vessel mounted one is termed as moving vessel 
(MV) measurement (an example shown in Fig. 2a). 

The suitability of using the proposed indirect method is analyzed 
herein using the synthetic data from the U.S. tidal energy geodatabase 
[31]. The FI measurement is represented using a full-year-long tidal time 
series with high temporal resolution (Δt = 6 min) at a location. The MV 
measurements are represented using short time records, with durations 
spanning a total length of hours at each of the TEC locations (Δt = 1 
hour). A full-year-long tidal current record at each MV measurement 
location is then inferred from the FI measurement, through a 
least-square regression method. 

Recall that the IEC-62600-201 [24] standard requires only a 90-day 
measurement record. In this study testing the regression-based indirect 
measurement method, we assume a year-long tidal time series in a year 
of limited nodal cycle influence at the FI measurement location (i.e., 
minimizing the uncertainty linked to the FI measurement). This allows 
us to isolate the AEP uncertainty associated with the indirect method, 
from the uncertainty associated with the direct (FI) measurement. By 
separately assessing the AEP uncertainty in both methods, we then make 
recommendations on the optimal durations of FI measurement and MV 
measurement (see Discussion and Conclusion). 

Also, tidal current records, whether they represent the FI or the MV 
measurement, are all obtained by processing the tidal constituents of the 
geodatabase through “t_predic”. Note that “t_predic” allows generation 
of tidal records with any specified temporal resolution. To make these 
records more realistically represent the measurement obtained from the 
field, the temporal resolution of the FI measurement is set at Δt = 6 min, 
to resemble the sampling frequency of the FI current profilers repeatedly 
measuring a fixed water column. It is important to note that the FI 
temporal resolution needs to have a Δt less than or equal to the MV 

Fig. 1. Spatial distribution of moderate energy sites (red circles) and high 
energy sites (red circles with yellow edge) of interest. 
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temporal resolution. For this case, the temporal resolution of the MV 
measurement is set at Δt = 1 hour. Realistically for a properly assigned 
TEC array, a moving vessel can circulate around all TEC locations in an 
hour, during which each TEC location is measured for several minutes 
and an average current speed is computed, hence the approximately 1-h 
resolution at each TEC. 

With the synthetic FI and MV records, we build the least-square 
regression modelling framework as follows, 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

y2(t)

⋮

yM(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=Lx0(t), (5)  

where L is the linear operator to be solved, x0(t) denotes the FI record at 
location 0, yj(t) is the MV record at j-th TEC location of the array, j 
ranges from 1 to M, where M is the total number of TEC locations sur
veyed using MV measurements. The total number of TEC locations at a 
given site is equal to M+ 1, including MV and FI measurements. 

The solution of L relies on having identical timestamps for the MV 
and FI records, which is achieved by interpolating the FI record onto the 
same timestamps of the MV measurements. More realistically, as the 
vessel carrying the current profiler revisits the MV locations periodi
cally, the MV measurement timestamps differ between TEC locations. 
Thus, the FI record is individually interpolated onto timestamps of each 
MV measurement location. Then we solve L as, 

L=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1(tb1 )x0(tb1 )
H/( x0(tb1 )x0(tb1 )

H)

y2(tb2 )x0(tb2 )
H/( x0(tb2 )x0(tb2 )

H)

⋮

yM(tbM )x0(tbM )
H/( x0(tbM )x0(tbM )

H)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (6)  

where tbj is the timestamps at j-th MV measurement location, and H is the 
conjugate transpose. Note that if the time series is real, H is equivalent to 
T, the transpose. In this synthetic study, we generate MV measurement 
time series such that tb1 = tb2 = … = tbM , and each timestamp of tbj has 
an exact match in tf , the timestamps of the FI record (i.e., no interpo
lation involved). 

The inferred long-term time series at MV measurement locations are 
obtained by, 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ŷ1
(
tf
)

ŷ2
(
tf
)

⋮

ŷM
(
tf
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=Lx0
(
tf
)
, (7)  

where ŷj(tf ) is the inferred tidal record at j-th location. 
The array AEP is the summation of the individual-location AEP, 

∑M
j=0ÂEPj, estimated from each inferred record and the FI record. This is 

compared with the reference array AEP, 
∑M

j=0AEPj, obtained from the 
full-year “true” records of the geodatabase. Thus, the relative error of 
array AEP is defined accordingly as, 

dAEPs=

∑M

j=0
ÂEPj −

∑M

j=0
AEPj

∑M

j=0
AEPj

× 100%. (8) 

For robust assessment of the AEP uncertainty associated with the 
regression-based method, we defined 127 tidal energy sites (each site 
consists of an array of TECs, Fig. 2b). We selected a TEC array following 
a similar strategy as for selecting a single TEC (see Section 2.2); that is, 
for each array, at least one TEC location has a mean current magnitude 
≥ 1 m/s, and all locations have a mean current magnitude ≥ 0.5 m/s, a 
water depth ≥ 5 m, and any pair of TEC locations is separated by a 
distance of at least 0.5 km and at most 6 km. We generated the full-year- 
long (2012) tidal current and water level records at each TEC location of 
each tidal energy site. At each site, one TEC location is selected as the FI 
location and the sensitivity of the choice of the FI location is explored in 
this analysis and will be discussed. The rest of the sites are the MV 
measurement locations, at each of which we randomly generated 500 
timestamps from the 2012 records. The tidal current records that start 
from these sampled timestamps were then extracted with 1-h sampling 
rate. Record durations vary from 12 to 240 h. From these, we computed 
a dAEPs(a, τ, d) matrix of size 127 × 500× 228. [a denotes the index of 
the TEC array.] 

For the regression framework, different combinations of input vari
ables that we examined include (a) the velocity magnitude, x0(t) =

U0(t), (b) the velocity magnitude and water level η0(t), i.e., x0(t) =
[

U0(t)
η0(t)

]

, (c) the velocity vector, x0(t) = U→0(t), (d) the velocity vector 

and water level, x0(t) =

⎡

⎣ U→0(t)
η0(t)

⎤

⎦, (e) the cubic velocity magnitude, 

x0(t) = U0(t)3, and (f) the cubic velocity magnitude and water level, 

x0(t) =

[

U0(t)3

η0(t)

]

. Correspondingly, the output variables vary: (a-b) 

yj(t) = Uj(t), (c-d) yj(t) = U→j(t), (e-f) yj(t) = Uj(t)3, i.e., in the same 

Fig. 2. Example layout of defining the array of potential Tidal Energy Con
vertors (TECs) and the spatial distribution of all arrays analyzed. (a) At a pre- 
defined site (a highlighted circle of a 3 km radius) containing at least one 
location of mean current magnitude ≥ 1 m/s, the highest velocity location is 
selected for FI measurement (red cross); the nearby high velocity locations are 
set for MV measurements (black cross). Color contours are the mean current 
magnitude. The array of TECs consists of the FI measurement and the MV 
measurement locations. All TECs have the mean current magnitude ≥ 0.5 m/s, 
the water depth ≥ 5 m, and a minimum distance between any pair of locations 
≥ 0.5 km. (b) Spatial distribution of 127 arrays of TECs (red dots) defined from 
the tidal database, with each array containing 5–10 TECs. Yellow cross marks 
the geographic location of the example in (a). 
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format as the velocity component of the inputs. Thus, the AEP error 
matrix is expanded to dAEPs(a,τ,d,q). [q denotes the option of regression 
framework.] These options allow us to examine the optimal combination 
of variables, which helps us evaluate the robustness of the regression- 
based array AEP assessment. Because the regression is applied at each 
TEC location, this will account for the spatial variability of the velocity 
and water level. Note that for all of these options, we examine the 
synthetic tidal records, to evaluate the feasibility of the regression-based 
method; validation against field measurement results remains to be 
conducted in the future. 

3. Results 

3.1. Spatial and temporal variation of AEP uncertainties 

Following the guideline of IEC-62600-201 [24], we start from 
examining the AEP uncertainty from 90-day tidal current synthetic re
cords (i.e., analyzing dAEP(s, τ, d= 90 days) as outlined in 2.2). Results 
are shown in Fig. 3. The AEP uncertainty is shown by the 95% range of 
AEP errors at each location of interest (Fig. 3a and b). The upper bound 
(97.5%) and the lower bound (2.5%) AEP uncertainty at each examined 
location shows the scale of AEP uncertainty and how it is spatially 
dependent. Overall the AEP uncertainty associated with 90-day records 
is between ± 15% along the U.S. east coast, California coast, and within 
Gulf of Alaska, whereas the uncertainty is between − 15% and +40% 
along Aleutian Islands, within Gulf of Mexico and near Seattle. 

We also analyzed how the AEP uncertainty varies as we change the 
time periods (Fig. 3c). Our result shows that the AEP uncertainty (shown 
by both the mean and the 95% confidence interval) has large low- 

frequency (decadal) and less high-frequency (monthly) variability, 
which is later found to be attributed to the lunar nodal cycle and the 
lunar spring-neap cycle, respectively. Comparing with the moderate 
energy locations (gray shading in Fig. 3c), the AEP uncertainty of the 
high energy locations (pink shading) is smaller (cf. between ± 15% with 
− 15%–40%). The low frequency variability implies that the effect of the 
lunar nodal cycle must be factored into any long-term estimates of AEP. 

3.2. Lunar nodal cycle effect on AEP assessment 

Because all the time series include nodal corrections, to isolate the 
nodal cycle effect on AEP assessment, we adopted a recursive Gauss- 
Newton method (see Appendix), which fits a sinusoidal function to the 
temporally varying AEP errors. Each location is separately processed to 
find the amplitude and phase of the nodal fluctuation leading to mini
mum residual AEP errors. An example of fitting the sinusoidal function is 
shown in Fig. 4a. At this example location, a large portion of the AEP 
uncertainty (total uncertainty is up to 35%) is due to the lunar nodal 
cycle (red line in Fig. 4a), as the residual AEP uncertainty (gray line) 
after removing the contribution from the lunar nodal cycle has a much 
smaller percentage (less than 10%). We apply this Gauss-Newton 
approach to obtain the portion of AEP uncertainty only associated 
with the nodal cycle at each location of interest (Fig. 4b and c; i.e., 
resulting in dAEPnodal(s, τ, d= 90 days), with subscript nodal denoting the 
portion of AEP error induced by nodal cycle). At the majority of TEC 
locations, the scale of the nodal cycle contributed AEP uncertainties 
(Fig. 4b and c) is similar to the scale of the full AEP uncertainties (Fig. 3a 
and b), suggesting that the nodal cycle is a major source of AEP uncer
tainty when assessed from a 90-day measurement record. 

Moreover, consistent with previous studies [10,11], we found that 
the location-dependent nodal modulation is linked to the characteristics 
of the tidal pattern, i.e., whether a location is characterized by diurnal, 
semidiurnal, or mixed tides. Tidal characteristics are determined by the 
form factor (e.g., Ref. [35]), F, a dimensionless number representing the 
ratio of tidal current constituents between the main diurnal and semi
diurnal components, as followed, 

F =
K1 + O1

M2 + S2
, (9)  

where K1, O1, M2, and S2 are the tidal major axis amplitudes. Then tides 
are classified as diurnal (F ≥ 1.0), semidiurnal (F < 0.3), or mixed 
(0.3 ≤ F < 1.0). Based on the classification, 10.2% moderate energy 
locations are featured by diurnal tides, mainly located along Aleutian 
Islands, within Gulf of Mexico and near Seattle; 64.4% locations are in 
semidiurnal form, located along the U.S. east coast, California coast and 
within Gulf of Alaska; 25.4% locations are mixed tides, and they are 
sporadically scattered along the coast (Fig. 4c). 

For each tidal category, we computed the AEP uncertainty associated 
with the nodal cycle. This is done by first isolating locations of a tidal 
form (e.g., s = locations of diurnal tides) and calculating the statistics of 
dAEPnodal(s, τ, d= 90 days) across those locations (Fig. 4d–f). Semi
diurnal tidal locations present a nodal modulation that last peaked in 
2015, and will reach to maximum again in 2034, coinciding with the 
minimum lunar declination. Diurnal tidal locations show a nodal mod
ulation that last peaked in 2006 and will peak again in 2025, coinciding 
with the maximum lunar declination. Mixed tides present the nodal 
modulation in between, hence having a maximum and a minimum in 
2006, 2015, and so on. Our finding of the low frequency AEP uncertainty 
connected to the tidal forms is consistent with the equilibrium tidal 
theory, indicating that the nodal modulation of semidiurnal (diurnal) 
tides reaches a maximum when the lunar declination is at its minimum 
(maximum) [11]. 

Fig. 3. Spatial distribution and temporal variation of the AEP uncertainty (%) 
estimated from 90-day tidal current records. (a, b) Spatial distribution of AEP 
uncertainty, estimated as (a) the 97.5% and (b) the 2.5% AEP errors (i.e., 95% 
confidence interval) at each location. Circles with a black-colored outline mark 
the high energy locations. (c) AEP uncertainty as a function of time. Lines 
(shading) represent the average (the 95% range) AEP uncertainty. Black (red) is 
evaluated from the moderate (high) energy locations. Dashed line marks 2012, 
the reference year. 
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3.3. Lunar spring-neap cycle effect on AEP assessment 

Next we removed the nodal modulation from the full AEP errors (i.e., 
dAEP(s, τ, d= 90 days) − dAEPnodal(s, τ, d= 90 days)). The residual AEP 
errors are relatively spatially uniform, with the uncertainty range 
overall smaller than the range induced by nodal cycle (cf. Fig. 5a with 
Fig. 4b). In this section, we show that the residual AEP uncertainty is 
mainly associated with the lunar spring-neap cycle. 

Note that the lunar spring-neap cycle operates on a frequency (i.e., 
29.53 days) much higher than the nodal cycle. Thus, analysis based on 
our original 500 samples over a century may be enough to examine the 
low frequency variability (i.e., ~27 samples every 18 years), but may be 
too scarce to reflect the monthly-scale fluctuation (i.e., < 1 sample per 
month). This could explain why the residual AEP seems noisy over a 
century timeline (e.g., gray line of Fig. 4a). To resolve the higher fre
quency variability, we randomly sampled another 500 timestamps 
during 2012 (i.e., ~42 samples per month) and calculated the AEP er
rors accordingly (i.e., an updated dAEP(s, τ, d) based on those time
stamps, following the procedure of 2.2). 

We then chose an example location, and show the AEP uncertainty 
assessed from 14.77-day, 29.53-day and 44.30-day tidal currents, cor
responding to durations of 0.5, 1.0 and 1.5 lunar spring-neap cycles 
(Fig. 5b). Among the three durations, the range of the AEP uncertainty is 
largest when AEP is evaluated from 14.77-day tidal currents, followed 
by 44.30-day and lastly 29.53-day records, suggesting that the AEP error 
does not monotonically decrease with increasing durations. More 
interestingly, when the AEPs assessed from 14.77-day tidal currents 
result in the maximum overprediction, the AEPs assessed from 44.30- 
day records result in the maximum underprediction. Comparing 
against the tidal current magnitude time series (gray line of Fig. 5b), we 
find that the shift from over-to underprediction by extending the record 

durations is linked to the portion of tidal current speeds enclosed by the 
record durations. A 14.77-day time period may collect a high tide record 
(solid black line segment), whereas a 44.30-day time period extended 
from that 14.77-day period (dotted black line segment) includes a larger 
portion of lower tides, hence the overprediction (up to 30% AEP 
assessment error) and underprediction (up to 12% AEP assessment 
error), respectively. Any 29.53-day time period, on the other hand, 
collects a relatively full range of tidal currents, hence leading to smallest 
AEP errors (at most 6% AEP assessment error) among the three 
durations. 

For a robust assessment, we expand from analyzing one location to 
incorporate all locations, by calculating the mean and the 95% range of 
AEP uncertainty across all locations (Fig. 5c). We find that the AEP 
uncertainty assessed from 14.77-day tidal currents is consistently higher 
than those evaluated from 44.30-day records, followed by 29.53-day 
records. Moreover, the peak overprediction from 14.77-day records 
and the peak underprediction from 44.30-day tidal currents are 
consistently in phase. These results support our findings based on one 
location, i.e., how the AEP error is sensitive to the portion of tidal cur
rents captured by a measurement period. 

To better understand how the effect of lunar spring-neap cycle 
translates into the sensitivity to the measurement durations, we exam
ined the AEP uncertainty as a function of durations, ranging from 14 to 
196 days (Fig. 5d; i.e., computing the 95% value based on the long 
vector of the absolute AEP errors, |dAEP(s,τ,d)|, for a given d). The AEP 
uncertainty assessed from a 14-day record is the largest, ~35%. As the 
duration increases from 14 days to 29.53 days, the AEP error gradually 
decreases, reaching to a local minimum of ~5%. The AEP error starts to 
increase for durations longer than 29.53 days, but drops again to ~4.6% 
for duration of 59.06 days. Overall, the AEP uncertainty shows an 
oscillation with a frequency of lunar spring-neap cycle and a decaying 

Fig. 4. Spatial distribution and temporal variation of the AEP uncertainty (%) contributed by the nodal cycle effect. (a) Illustration of identifying and isolating the 
nodal cycle contribution (red line) from the full AEP uncertainties (dots) and showing the residual (gray line). (b, c) Spatial distribution of the AEP uncertainty 
induced by the nodal cycle, with (b) showing the 97.5% and (c) the 2.5% AEP errors. In (c), the red circles mark the locations of diurnal tide (10.2% of all locations), 
the blue circles mark the semidiurnal tide (64.4%), and the remaining are mixed tide (25.4%). (d, e, f) AEP uncertainty induced by the nodal cycle, as a function of 
time, separately assessed based on the category of (d) diurnal, (e) mixed or (f) semidiurnal tides. The category is based on the major axis amplitude ratio between 
main diurnal and semidiurnal tidal constituents (equation listed in (e) and thresholds of each category marked at the bottom of (d, e, f)). Black (red) denotes the 
moderate (high) energy locations. Dashed line marks 2012, the reference year. 
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Fig. 5. The AEP uncertainty (%) contributed by the lunar spring-neap cycle, fluctuated as the duration of the tidal current records varies. (a) Spatial distribution of 
the AEP uncertainty after removing the nodal cycle contribution. (b) An example location showing the AEP uncertainty assessed from 14.77- (solid red), 29.53- 
(dashed red) and 44.30-day (dotted red) tidal current records, as a function of the center time of those records. The gray line shows the current magnitude time series 
at the location. Line segments with endpoints mark the lengths of 14.77 (solid black), 29.53 (dashed black) and 44.30 days (dotted black) for reference. (c) Same as 
(b) except the analysis is expanded to all locations. Line and shading represent the mean and the 95% range across all locations. Black/red/blue corresponds to 
statistics of 14.77/29.53/44.30 days. (d) 95% absolute AEP uncertainty assessed from various durations, ranging from 14 to 196 days. Black (red) line is evaluated 
from moderate energy (high energy) locations. Gray dashed line marks the 90 days, the reference duration. 

Fig. 6. AEP uncertainty (%) of TEC arrays sensitive to spring-neap tide, the tidal energy magnitude and locations of the FI measurements in the arrays, and various 
regression modeling frameworks. (a) AEP errors assessed from the 12- (red), and 25-h (black) tidal currents of MV measurement, as a function of time. Line is the 
average, and the shading is the 95% confidence interval of all TEC arrays. Vertical gray solid and dashed lines mark the dates of neap tide. (b, e) AEP uncertainty 
assessed from various durations of MV measurements, ranging from 12 to 240 h, with (b) plotting the 95% absolute AEP errors and (e) plotting the mean. Black line is 
evaluated from all examined time periods; top (bottom) dashed line is evaluated from neap (spring) tide time periods. (c) Boxplot showing the mean (middle lines) 
and the 95% confidence interval (from top to the bottom of bars) AEP errors, assuming that the FI measurement is placed at highest vs. lowest mean current 
magnitude position, and center vs. corner of the arrays. For each category of the FI measurement positions, the examined durations of the MV measurement are 12 
(left bars of each category) and 25 (right bars) hours. (d) Same as (c) except for testing different inputs of the regression models, including current magnitudes, 
current magnitudes and water levels, currents with real zonal components and imaginary meridional components, currents and water levels, cubic current mag
nitudes, cubic current magnitudes and water levels. 
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magnitude as durations increase, which corroborates with our previous 
finding that the AEP uncertainty is minimized for fully resolving lunar 
spring-neap cycles and is maximized when a lunar spring-neap cycle is 
partially resolved. 

3.4. Lunar spring-neap cycle effect on array AEP assessment 

We have examined the uncertainty of AEP associated with single TEC 
deployment, directly computed using tidal currents with a short-record. 
Although these analyses assume a single TEC deployment, they are 
easily applicable to the expensive scenario of multiple bottom-mounted 
current profilers for assessing a TEC array. Alternatively, here we eval
uate a cost-effective strategy for assessing array AEPs (as outlined in 2.3; 
Fig. 2): (a) a long-term FI measurement of tidal currents at one location 
of the TEC array; (b) MV measurements collecting short records at the 
other locations; (c) the long-term records for each of these other loca
tions are then inferred from the FI record through regression, and later 
used for computing the array AEP. Note that we assume that the FI 
measurement has a full-year tidal record (i.e., minimizing the un
certainties linked to the FI measurement), in order to evaluate the un
certainty of AEP errors linked to the inferred method or the MV 
measurement. 

Yet with the full-year record, there is still one remaining source of 
AEP error pertaining to the FI measurement: the choice of FI measure
ment location among the TEC array (Fig. 6c). We hypothesize that the FI 
measurement is better placed at the highest energy location, rather than 
lowest energy, as the highest energy location contains the largest vari
ation of tidal currents and thus might be a more suitable source for 
predicting nearby less energetic locations. The second hypothesis is that 
the FI measurement is better placed at the center of the arrays, rather 
than the corner, as the center position is more likely to have similar flow 
fields to its nearby locations and thus might be beneficial for regression, 
which inherently relies on such similarity. The method will be sensitive 
to spatial gradients in the flow field, particularly if there is a phase shift 
in the timing of the flow; however, if a linear relationship exists because 
the two sites are relatively in phase, the method can still be successful. 
We tested the two hypotheses by setting the FI measurement at the max 
or the min energy position, the center or the corner of the TEC arrays. As 
expected, compared with the min energy position or the corner of the 
array, setting the max energy location or the center of the array as the FI 
measurement results in a much smaller range of AEP errors. (Note that 
here we analyze dAEPs(a, τ, d, q) associated with different FI deployment 
locations, while assuming q is the tidal current magnitude time series 
and d is either 12 or 25 h). This suggests that the regression-based AEP 
assessment is likely more accurate, when the TEC array is designed such 
that the highest energy location is at the center and the FI measurement 
is placed at that location. 

We then evaluated the sensitivity of the AEP assessment to the 
various frameworks of the inferred method. Options for the different 
frameworks include whether to predict the complex tidal current vec
tors, the tidal current magnitudes, or the cubic current magnitudes, and 
whether to incorporate the water levels in the input (Fig. 6d; detail 
illustrated in 2.3). Among these options, building the regression solely 
based on the tidal current magnitude time series (first 2 bars of Fig. 6d), 
one of the simplest frameworks, might be a robust option. (Note that 
here we analyze how dAEPs(a, τ, d, q) varies with different q, while 
assuming FI measurement is taken at the max energy location and d is 
either 12 or 25 h). 

Following these sensitivity analyses, we establish a robust baseline - 
constructing the modeling framework using tidal current magnitude 
time series and assuming the FI measurement taken at the max energy 
location of the TEC arrays (i.e., the dAEPs(a, τ, d, q) is reduced to 
dAEPs(a,τ,d)). Based on this baseline, we examine the AEP uncertainty 
as a function of time as well as the durations of the measurement periods 
(Fig. 6a). We are mainly interested in two durations, 12 or 25 h, 
considering that shorter durations of mobile survey are easier to 

implement. We find that the 12-hr MV measurement in general leads to 
noisier AEP assessment and larger AEP assessment uncertainty than 
conducting the 25-hr MV measurement (Fig. 6a). This is also seen in 
Fig. 6c and d. We further examine this by evaluating the AEP uncertainty 
linked to a wide range of MV measurement durations, from 12 to 240 h 
(solid line of Fig. 6b, e). We find the AEP uncertainty rapidly decreases 
as the MV measurement duration increases from 12 to 25 h, and then 
slowly decreases for durations longer than 25 h. Our results are similar 
to other results in the literature (e.g. Ref. [36]), which suggest at least 
24-hr mobile surveys to capture the minimum tidal harmonics. 

More interestingly, the temporal variation of the AEP errors shows a 
clear fluctuation with respect to spring-neap cycle (Fig. 6a). Specifically, 
the AEP errors reach local extremes when the MV measures neap tides 
(vertical solid and dashed lines in Fig. 6a). In contrast, the range of AEP 
errors is the smallest when measuring spring tides (in between vertical 
lines). A larger range of AEP errors during neap tides and a smaller range 
of AEP errors during spring tides, whether we assume 12-hr or 25-hr MV 
measurement, is always present. Moreover, we find that the AEP eval
uated from spring tides is rigorously better than from neap tides, for any 
durations of interest (dashed lines of Fig. 6b, e). These results support 
that the array AEP errors evaluated from hours of MV measurements 
coupled with longer term FI measurements are largely associated with 
the spring-neap cycles. 

Lastly, through optimizing the choice of FI measurement, the 
modelling framework, the duration of MV measurement, and the time 
period to collect tidal record, our proposed indirect measurement 
scheme shows a relatively steady mean AEP uncertainty of − 3% (Fig. 6a, 
e). Out of the 127 TEC arrays, only 5% of the TEC arrays still show AEP 
uncertainty greater than 10% (Fig. 7), suggesting that the strategy of 
regressing a FI measurement onto nearby MV measurements is a viable 
option. 

4. Discussion and Conclusion 

The availability of measured tidal current records is scarce, espe
cially when compared to in-situ water levels [30]. To work around this 
limitation, in this study we utilize the U.S. tidal database containing 
tidal harmonics of millions of locations, for the advantage of generating 
tidal records for any time periods at a large quantity of locations. This 
allows us to rigorously examine the uncertainty of the AEP assessment 
linked to short tidal current records, and to provide comprehensive 
understanding of source of errors and impact. 

However, generating short tidal records based on tidal harmonics 
results in pure tidal time series, and the AEP uncertainty derived from 
these pure tides therefore does not resolve the impact from any non- 
astronomical sources. These sources may include weather related ef
fects, such as storm surges, waves, and climatic seasonal variability. 
Thus, without incorporating non-tidal effects, we acknowledge that the 
scale of the AEP errors may have been underestimated, compared to the 
AEP uncertainty analyzed from in-situ current time series. On the other 

Fig. 7. Spatial distribution of the 95% absolute AEP uncertainty, by setting FI 
measurement at maximum energy of the TEC array, assuming 25-h MV mea
surement during spring tides, and using current magnitude time series 
for regression. 
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hand, it is possible to collect current data during time periods of calm 
synoptic conditions [37], thereby restricting the non-tidal factors to be 
less influential and more comparable with numerical model-derived 
AEP. 

The use of boat-based MV measurements for capturing flow structure 
and velocity distributions in open channel flows, such as rivers, is not 
uncommon [38–46]. This approach aims to collect data while the boat is 
moving, hence, only one data point is typically obtained in each location 
along the boat path (a current profiler typically has a sampling rate of 1 
or 2 Hz). This approach is useful for mapping the velocity and calcu
lating flow discharge in a river cross-section. Several factors such as the 
stochastic nature of flow in rivers in which the flow discharge changes 
quickly over time, the high variability of bathymetry and topography 
within a relatively short distance, and coupled with the inherent tech
nical limitation of current profilers (diverging acoustic beams, 
measuring in inhomogeneous flow, Doppler noise), often contribute to 
the uncertainty of the current measurements significantly at riverine 
sites [47,48]. The MV measurements proposed for this project is 
different from the approach typically used in river applications. The 
approach taken here is to essentially take a longer measurement (e.g., 5 
min, which typically equivalent to 300–600 data points) at each station, 
and use the time-averaged velocity at each station to significantly reduce 
random error [40,48,49]. This time-averaged velocity, which removes 
instantaneous velocity fluctuations, are comparable to that obtained 
from numerical models, such as ROMS. In a tidal environment, a time 
averaging window between 3 and 5 min is generally sufficiently long 
enough for minimizing the variations caused by large-scale eddies, while 
at the same time is short enough for ensuring the current speed within 
this time period is relatively unaffected by periodic changes of tidal 
velocity magnitude [18]. Additionally, at tidal sites, the contribution of 
these factors is expected to be less significant, because unlike the sto
chastic nature of the flow in rivers, tidal flow is highly predictable. 

With the synthetic tidal records of various time periods and multiple 
sites, we examine the role of astronomical factors on the short-record 
induced AEP uncertainty. These astronomical factors include the 
18.61 years nodal cycle effect and 29.51 days spring-neap cycle effect. 
We find that an astronomical factor affects the AEP evaluation such that 
it fluctuates in the same frequency as the astronomical cycle. As tidal 
currents are a combined result of various tidal harmonics, the AEP un
certainty also includes the combined effect of different astronomical 
impacts. With each astronomical impact separately examined, we pre
sent a schematic diagram (Fig. 8) to summarize the portion of AEP un
certainty linked to each astronomical factor and how the portion varies 
with the measurement time scale. 

The lunar spring-neap cycle is a critical factor that contributes to a 
significant AEP uncertainty, up to 33% uncertainty when the measure
ment duration is one half of the cycle, i.e., 14.76 days. In general, the 
uncertainty decreases in an oscillating manner as a function of mea
surement duration, and is at its local minima when the record period is 
an exact multiple of the lunar spring-neap cycle, i.e., 1 × 29.51 days, 2 ×

29.51 days, and etc. In contrast, the uncertainty is at its local maxima 
when the record period is an exact multiple of the lunar spring-neap 
cycle plus one half of the lunar spring-neap cycle, i.e., 1.5 × 29.51 
days, 2.5 × 29.51 days. This observation suggests that resolving a full 
tidal current variation in the exact length of a lunar spring-neap cycle 
provides a more accurate representation of the long-term tidal current 
statistics. In addition, when the available record of data is longer than an 
exact multiple of the lunar cycle, we recommend to cut off the length of 
the record for AEP analysis to an exact multiple of the lunar cycle, to 
reduce the uncertainty in AEP calculation. 

The lunar nodal-cycle induced AEP errors are in the order of ~10%. 
We emphasize that, on a measurement time scale much shorter than a 
nodal cycle, the portion of AEP errors linked to the nodal cycle still 
exists, however not apparent from the appearance of short tidal current 
records. Thus, we recommend to account for the contribution from the 
lunar nodal cycle, especially during the strong nodal effect years, such as 
the year 2025 and the year 2034. Notably, accounting for the nodal 
effect requires prior-knowledge of the multi-decadal tidal time series, 
which is not readily available in the fieldwork. This can be accomplished 
by processing the collected tidal time series by T-TIDE, obtaining the 
tidal harmonics, and simulating the long-term tidal time series for 
identifying the nodal contribution. 

If the measurement at a location is only on a time scale of hours, we 
propose that the AEP is assessed from an inferred tidal record, projected 
from a long-term tidal record of a nearby location based on the two 
locations’ co-variability. On these extremely short measurement time 
scales, the bi-weekly variation of a spring-neap cycle has a prominent 
impact on the AEP uncertainty. Specifically, the short record measure
ment taken during spring tide leads to a more accurate estimation of AEP 
with less uncertainty, compared with measurement taken during neap 
tide. This is likely associated with tidal variation during spring tide 
being much larger than during neap tide, hence providing relatively 
“fuller” range of tides to be captured by regression. Note that in this 
study, we assume a continuous MV measurement (e.g., measuring 12 or 
25 h nonstop), which in the fieldwork is not always feasible. However, it 
is plausible to effectively extend the lengths of MV measurement, such as 
measuring 8 h for 3 consecutive days. For the purpose of capturing a 
fuller range of tidal variation, there might be a difference, e.g., between 
measuring 3 days during 3 different spring tide periods, or measuring 2 
days during spring tide and 1 day during neap tide, etc. Whether there is 
an optimal strategy for the number of days and the corresponding pe
riods of measurement is to be investigated in a different follow-up study, 
where we will also examine the actual FI and MV measurement time 
series collected in the field following the guidelines of this study. Lastly, 
we emphasize that, despite the difference of AEP uncertainty for MV 
measurement during spring and neap tide, the mean AEP uncertainty 
across 127 sets of TEC arrays is only 3%, hence the robustness of the 
inferred method. 

Lastly, the inferred method of choice is a least squares regression, 
evaluated directly on tidal records rather than tidal harmonics. A classic 
tidal harmonic analysis applies least square fitting to find the amplitude, 
the inclination and the phase of a known-frequency tidal constituent. 
Yet, under the circumstances of hours measurement, fitting tidal har
monics directly requires solving an underdetermined system, i.e., more 
unknowns than equations. Thus, we evaluate the least squares regres
sion on the tidal record directly, i.e., solving a statistically robust 
overdetermined system. The resulting AEP error is reasonable and thus 
supports such an inferred method. 

Overall, our result corroborates and extends from the recommen
dation of IEC-62600-201. For single TEC deployments, we recommend a 

Fig. 8. Schematic diagram summarizing AEP error scales linked to different 
physical processes, how they are represented in measurement time scales and in 
the methods of being evaluated. Physical processes including spring-neap cycle 
and nodal cycle. Methods include evaluating TEC arrays based on regression 
when measurement time scale is less than 14 days, and evaluating the single 
TEC directly when measurement is longer. 
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90 days measurement for projects with economical flexibility, and an 
exact 30 days measurement for projects with a tight budget. For TEC 
arrays using our inferred scheme, we recommend collecting FI mea
surement following the guidelines for the single TEC deployment and 
conducting MV measurement during spring tide for an effective length 
of 25 h. In both scenarios, the nodal cycle effect can be isolated by 
processing the long-term measured or inferred tidal current records in T- 
TIDE. In summary, our study helps provide guidelines on how to opti
mally choose measurement time periods, under what circumstances to 
apply direct assessment or regression assessment, what to expect on the 
scale of AEP errors and the astronomical sources leading to such AEP 
errors. 
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Appendix 

A Recursive Gauss-Newton Method 

The recursive Gauss-Newton algorithm is commonly applied to solve nonlinear least square problems. In this study, given a time series of AEP 
error, the method is used to fit a sinusoidal function and find the amplitude, the frequency, the phase and the constant bias that leads to the least square 
error between the fitted and the original time series. We first assume a general form of sinusoidal function, 

w(τ)= c1 sin(2π ⋅ c2 ⋅ τ+ c3) + c4 (A.1)  

where c1 is the amplitude, c2 is the frequency, c3 is the phase, and c4 is the constant bias. w(τ) is a vector, equivalent to temporal variation of 
dAEP(s, τ, d= 365 days) at a location s. The derivative with respect to c1, c2, c3, c4, is as followed, 

∂w
∂c1

= sin(2π ⋅ c2 ⋅ τ+ c3), (A.2)  

∂w
∂c2

= c1 ⋅ 2π⋅τ cos(2π ⋅ c2 ⋅ τ+ c3), (A.3)  

∂w
∂c3

= c1 cos(2π ⋅ c2 ⋅ τ+ c3), (A.4)  

∂w
∂c4

= 1. (A.5) 

This forms a Jacobian matrix of J =

[
∂w
∂c1

∂w
∂c2

∂w
∂c3

∂w
∂c4

]

. The update direction of the iteration is determined as, 

Δ=
(
JTJ

)− 1( JT(w(τ) − ŵ(τ))
)
, (A.6)  

where ŵ(τ) is the fitted time series. The iteration starts from initializing parameters, c = [ c1 c2 c3 c4 ]
T and evaluating ŵ(τ), J and Δ accordingly. 

The estimated parameters of next step are then determined by the update rule, 

ck+1 = ck + λ⋅Δk, (A.7)  

where the superscript k represents the iteration step and λ is a small-value constant, denoting a small step toward the iteration direction (in this study, 
we take λ = 0.001). By recursively updating c, we eventually arrive at a set of parameters leading to minimum least square error, i.e., solving 
argmin

c
1
2‖w(τ) − ŵ(τ)‖2

2. The ŵ(τ) time series evaluated based on the optimal parameters is thus the nodal cycle contributed AEP error. 
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